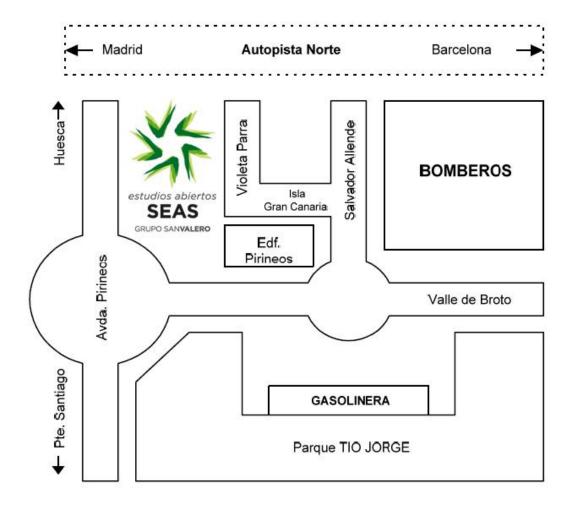


PRÁCTICAS PRESENCIALES ENERGÍA SOLAR TÉRMICA

Prácticas Presenciales


"ENERGÍA SOLAR TÉRMICA"

Área: ENERGÍA SOLAR TÉRMICA

LUGAR DE CELEBRACIÓN

Instalaciones de Fundación San Valero, en c/ Violeta Parra 9 50015 Zaragoza

Planta E, de 10:00 a 14:00 h.

Aclaración:

Para las prácticas realizadas en c/ Violeta Parra 9 Fundación San Valero, el acceso a las instalaciones se realizará por la entrada de Fundación San Valero, NO por la entrada del edificio de SEAS.

Fig. 1: Entrada Fundación San Valero

Fig. 2: Localización Fundación San Valero

Profesor/a: Luis Carlos Gracia Frauca

DESCRIPCIÓN:

Durante la jornada presencial se pondrán en práctica los conocimientos adquiridos referentes a los componentes y al montaje de una instalación solar térmica, con especial atención a:

- -conexión serie o paralelo de captadores solares;
- -intercambiador de calor;
- -electrocirculador;
- -válvula desviadora de tres vías;
- -disipación de los excedentes energéticos;
- -circuito secundario;
- -termostato diferencial;
- -valvulería y racorería;
- -montaje de un captador de tubo de vacío

Para ello se alternarán las explicaciones teóricas con el montaje del circuito primario y secundario de una instalación solar térmica con dos captadores solares.

Fig. 2: Componentes de la instalación solar que se montará durante la práctica.

Por otra parte, si se dispone de tiempo al final de la práctica anterior, se hará uso de un software comercial para el dimensionado de la superficie de captación de una instalación para proporcionar ACS a un edificio de viviendas. Dicho programa también se empleará para determinar y valorar las pérdidas por sombras, orientación e inclinación en un ejemplo de instalación solar.

REQUISITOS:

Es requisito para la realización de la práctica, haber trabajado las Unidades Didácticas 1 a 7.

OBJETIVOS DE LA PRÁCTICA:

- Reconocer los componentes de una instalación y adquirir nociones acerca de su funcionamiento.
- Ser capaz de realizar el montaje básico de una instalación solar térmica.
- Conocer las técnicas de regulación de una instalación solar térmica.
- Saber emplear e interpretar un software comercial para el dimensionado de instalaciones solares térmicas.

PROPUESTA DE LA PRÁCTICA:

1^a parte:

- 1.1.- Identificación de componentes: Componentes principales, valvulería, racorería.
- 1.2.- Captador de placa plana. Materiales que lo componen. Ficha de características.
- 1.3.- Campo de captadores: Conexionado serie y paralelo. Ventajas e inconvenientes. Uso de manguitos. Valvulería a la entrada de una fila. Válvulería a la salida de una fila.

- 1.4.- Intercambiadores de calor. Tipos. Características.
- 1.5.- Electrocirculadores. Curvas de funcionamiento. Ficha de características.
- 1.6.- Válvulas especiales: motorizadas y termostáticas
- 1.7.- Vaso de expansión cerrado. Lugar de instalación.
- 1.8.- Aerotermo disipador: Función. Otras alternativas para evitar riesgos de sobrecalentamiento.
- 1.9.- Circuito secundario: Componentes. Fluido caloportador.
- 1.10.- Control y regulación: Termostato diferencial.
- 1.11.- Montaje de un captador de tubo de vacío.

Fig. 3: Captador de tubos de vacío que se montará durante la práctica.

2^a parte:

2.1.- Se van a determinar las pérdidas de radiación por orientación, inclinación y sombras. Para ello se va a usar el software "CTE Solar". Acceder desde "Inicio: Programas: CTE Solar" y elegir la opción para el cálculo de pérdidas por sombras.

Enunciado:

Considerar una instalación que se va a realizar en Madrid, estando los captadores inclinados 30° y orientados 10° al Sudeste (superposición arquitectónica).

2.1.a) Determinar el porcentaje de pérdidas de irradiación solar provocadas por las sombras arrojadas por ese perfil de obstáculos.

Para ello, en primer lugar representa el perfil de obstáculos en el diagrama de trayectorias solares del software.

Los valores de elevación y acimut correspondientes al perfil de obstáculos son:

Alineación	Azimut $lpha$	Elevación
	<i>(°)</i>	β (°)
OA	-45	27
OB	-32	27
OC	-32	20
OD	-17	20
OE	0	25
OF	22	20
OG	35	20
ОН	35	41
OI	55	41

Seleccionar la tabla de referencia cuyos valores de β y α sean más parecidos a los de los captadores de la instalación en estudio (β =30° y α =-10°).

Resultado: 6%

El proceso de resolución puede verse en el Pliego de Condiciones para Instalaciones Solares Térmicas del I.D.A.E. (Instituto para la Diversificación y el Ahorro de la Energía), www.idae.es

2.1.b) Estimar las pérdidas por orientación e inclinación.

Usar el diagrama de pérdidas por orientación e inclinación del software.

2.2.- Dimensionado del campo de captadores (método F-chart) para un bloque de viviendas de nueva construcción situado en la ciudad de Madrid. El edificio consta de 24 viviendas repartidas en 6 plantas, a razón de 4 viviendas por planta.

Todas las viviendas son iguales y constan de 3 dormitorios dobles. Disponen de gas natural como energía convencional.

Considerar los captadores instalados según se indica en el apartado anterior 2.1.

Usar el software "CTE Solar". Ejecutarlo desde "Inicio: Programas: CTE Solar".

Elegir la opción para el dimensionado del campo de captadores.

BIBLIOGRAFIA RECOMENDADA:						
-Manual SEAS, Energía Solar Térmica.						
-Manuales de instalación de los diferentes elementos hidráulicos a utilizar.						
-Código Técnico de la Edificación CTE, documento DB HE-4						
(www.codigotecnico.org)						
-Pliego de Condiciones para Instalaciones Solares Térmicas del I.D.A.E.						
(Instituto para la Diversificación y el Ahorro de la Energía), www.idae.es						
MATERIALES NECESARIOS:						
Material diverso para el montaje de una instalación solar térmica.						
ASPECTOS A VALORAR:						
No aplicable						
DURACIÓN DE LA PRÁCTICA:						
Máximo 4 horas						

No aplicable

SOLUCIÓN DE LA PRÁCTICA:

ANEXO:

A.1.- Identificación de componentes. Componentes principales, valvulería, racorería.

El esquema de principio que se desarrollará será el que se muestra en la figura siguiente:

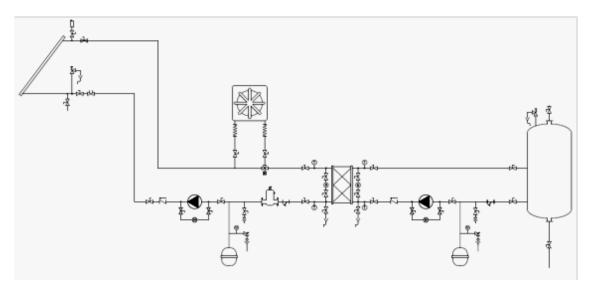


Fig. 4: Esquema de principio de la práctica

Fig. 5: Muestra de la valvulería y racorería a emplear

A.2.- Captador de placa plana. Materiales que lo componen. Ficha de características.

Modelo LUMELCO ST-2000 (ejemplo).

				ST-2000			
	Total (lxbxh) (mm)			2.050 x 1.010 x 90			
Dimensiones	Superficie bruta (m²)			2,1			
	Superficie de absorció	n (m²)		1,8			
Marco				Aluminio			
Cristal	Material		(ristal solar templado			
Ciristai	Espesor (mm)			4			
	Tipo de absorbedor			Cobre			
	Recubrimiento			Selectivo de Titanio			
Absorbedor	Absortividad			95 % ± 2 %			
	Emisividad			5 % ± 3 %			
	Soldadura			Con plata			
	Térmico trasero			Fibra de roca 40 mm.			
Aislamiento	Térmico lateral		- 1	Fibra de vidrio 20 mm.			
Aisiaillielito	Conductividad (W/mK))		0,032 / 0,034			
	Junta estanqueidad			EPDM			
	Tipo de fluido			Agua + Glicol			
Fluido	Volumen de fluido (litr	ros)		1,8			
Fidido	Caudal	Min.		65			
	recomendado (I/h)	Máx.		130			
	Coeficiente óptico			0,72 (1)			
B	K1			0,33 (1)			
Parámetros ensayados	K2			0,2 (1)			
	Coeficiente óptico			0,73 (1)			
	Coeficiente de Pérdida	as		0,44 (1)			
Temperatura máxima (℃)				120			
Presión (bar)	En operación			7			
	Máxima			10			
Tipo de tubería	Conexión hidráulica (n	nm)		22			
	Diámetro tubos interne	os (mm)		10			
Pérdida de carga (mbar)	50 l/h			0,59			
	700 l/h			4,51			
Máximo número de pane	les en paralelo			6			
Peso (Kg)	En vacío			39,84			
, 555 (1.8)	Lleno			41,64			

A.3.- Campo de captadores: Conexionado serie y paralelo. Ventajas e inconvenientes. Uso de manguitos. Valvulería a la entrada de una fila. Válvulería a la salida de una fila.

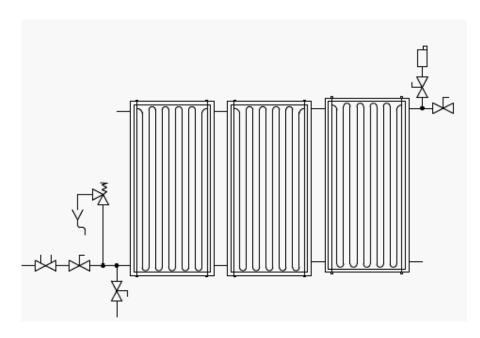


Fig. 5: Conexionado de captadores en paralelo

Fig. 6: Purgador automático (Caleffi). Ejemplo.

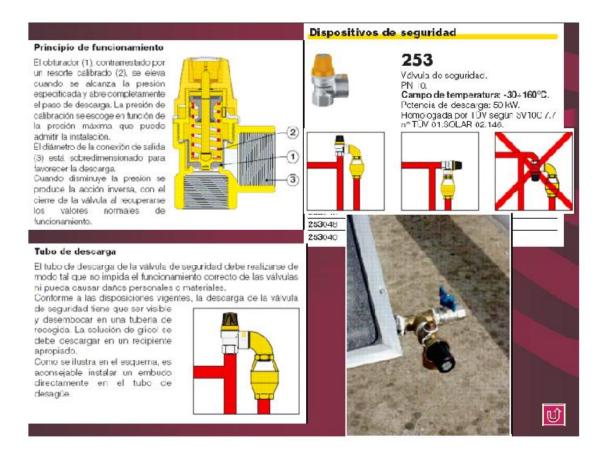


Fig. 7: Válvula de seguridad (Caleffi). Ejemplo.

Fig. 8: Válvulas de corte y antirretorno (Caleffi). Ejemplo.

A.4.- Intercambiadores de calor. Tipos. Características.

El siguiente paso es definir el intercambiador de calor. Puede ser interno o externo.

Por ejemplo, en el esquema siguiente se muestra un acumulador con intercambiador interno de tipo serpentín:

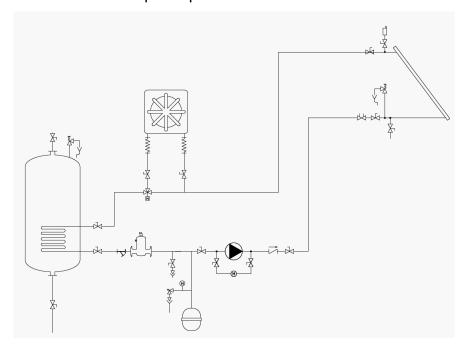


Fig. 9: Esquema con intercambiador interno.

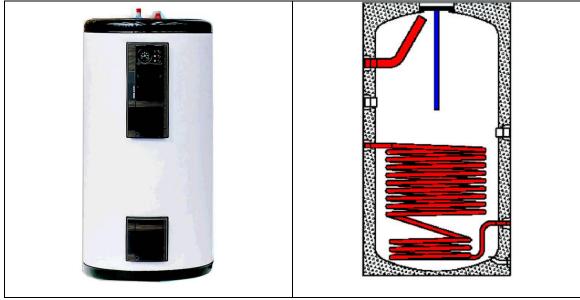


Fig. 10: Depósitos con intercambiador interno (catálogo Lumelco).

Modelo	Volumen (I)	intercambio	Altura (mm)	Diámetro (mm)	Peso en vacío	Temp. máx. (℃)	Presión máx. (bar)	Revestimiento interior	
	(1)	(m ²)	(IIIIII)	(IIIII)	(kg)	circuito de consumo		interior	
V - 150 / BL1	150	0,6	1050	603	50	95	13	Esmaltado	
V - 200 / BL1	200	1	1400	603	75	95	13	Esmaltado	
V - 300 / BL1	300	1,4	1930	603	105	95	13	Esmaltado	
V - 420 / BL1	420	1,5	1730	730	140	95	13	Esmaltado	
V - 500 / BL1	500	2,2	1970	730	170	95	13	Esmaltado	
V - 800 / BL1	800	2,2	1742	805	222	95	13	Galvanizado	
V - 1000 / BL1	1000	2,5	2150	805	265	95	13	Galvanizado	

Fig. 11: Características depósitos con intercambiador interno (catálogo Lumelco).

En caso de un **intercambiador externo**, si es de tamaño considerable, puede ser conveniente instalar termómetros y manómetros para facilitar las operaciones de revisión del mismo. Como siempre, también es recomendable instalar llaves de corte para independizar el elemento, en caso de que sea necesario desmontarlo o realizar operaciones de mantenimiento.

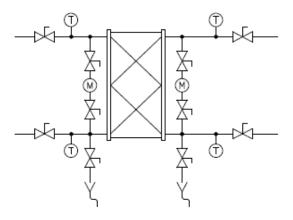


Fig. 12: Representación intercambiador externo de placas.

Fig. 13: Intercambiadores de placas (Lumelco). Ejemplo.

Su integración al esquema de principio sería de la forma siguiente:

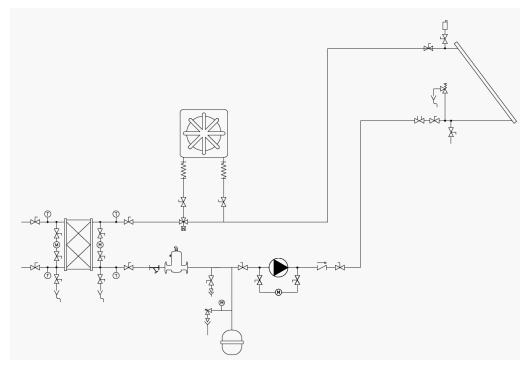


Fig. 14: Esquema con intercambiador externo.

	Dimensiones (mm) (A x B x C)	Potencia	Nº máx. de colectores			
Modelo	(ver esquema)	(kW)	ST-2000 y STEEL 2000	ST-2500 y STEEL 2500		
CB14-20	55 x 78 x 208	10	10	8		
CB27-24M	67 x 111 x 310	25	26	20		
CB76-20M	67 x 191 x 618	50	54	42		
CB76-30M	96 x 191 x 618	75	82	64		
CB76-40M	124 x 191 x 618	100	110	86		

Fig. 15: Características intercambiadores de placas (Lumelco). Ejemplo.

A.5.- Electrocirculadores. Curvas de funcionamiento. Ficha de características.

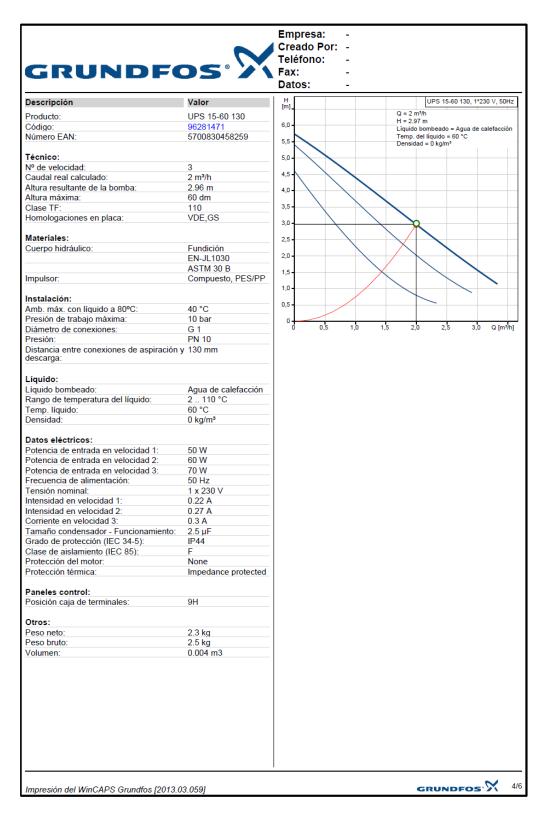


Fig. 16: Electrocirculador (Grundfos). Ejemplo.

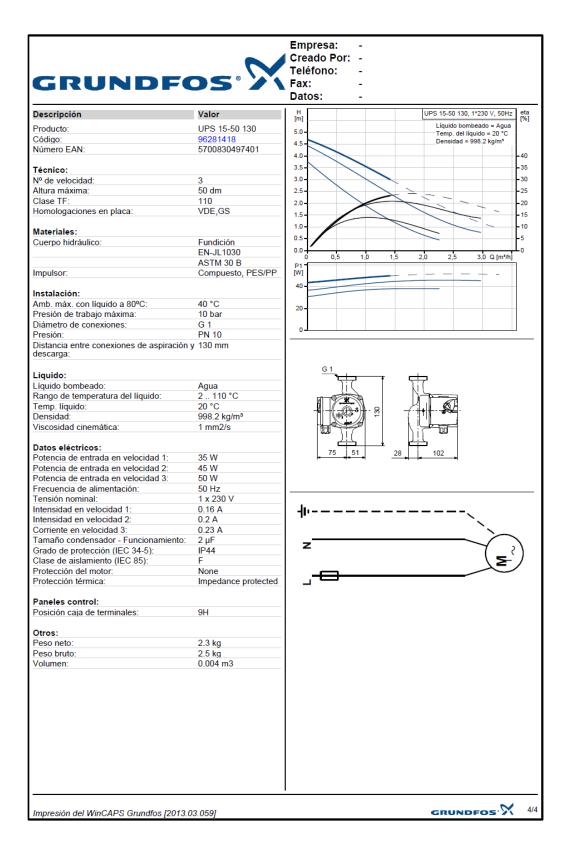


Fig. 17: Electrocirculador (Grundfos). Ejemplo.

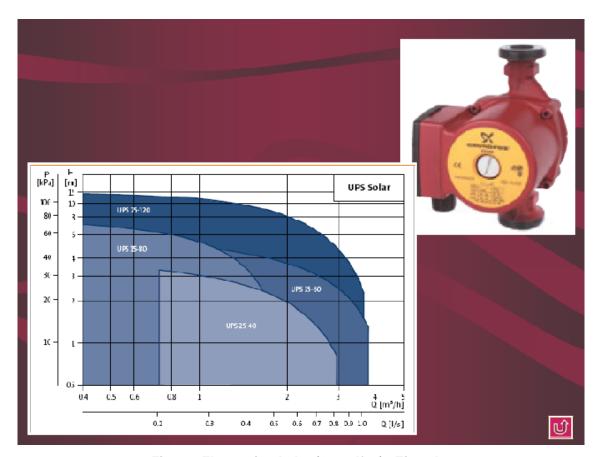


Fig. 18: Electrocirculador (Grundfos). Ejemplo.

A.6.- Válvulas especiales: motorizadas y termostáticas

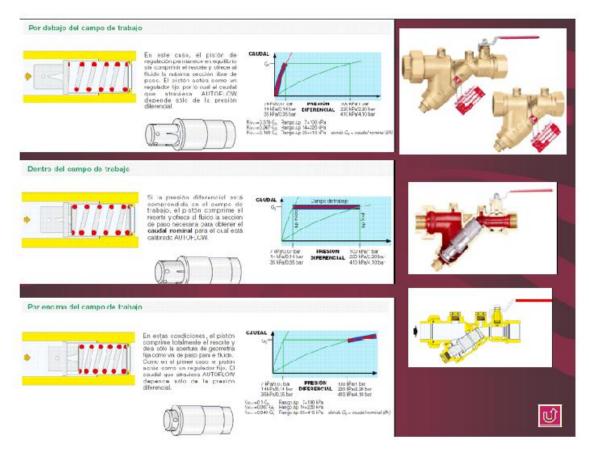


Fig. 19: Válvula reguladora de caudal autoflow (Caleffi). Ejemplo.

Serie VTS522, rosca externa:

Código	N.º de pieza	Referencia	Intervalo de	Kv*	V*	V*	Conexión	Conexión Dimensión				
Coaigo	n.º de pieza	neiereiicia	temperatura		E	A	В	C	D	(kg)		
CO 10 406	3172 01 00	VTS522	45 - 65°C	3,2	G 1"	84	62	60	56	0,86		
CO 10 407	3172 03 00	VTS522	45 - 65°C	3,5	G 1¼"	84	62	60	56	0,95		

^{*} Valor de Kv en m³/h con una caída de presión de 1 bar.

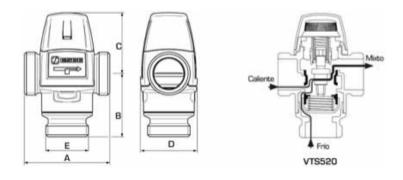


Fig. 20: Válvula mezcladora termostática (Salvador Escoda). Ejemplo.

A.7.- Vaso de expansión cerrado. Lugar de instalación.

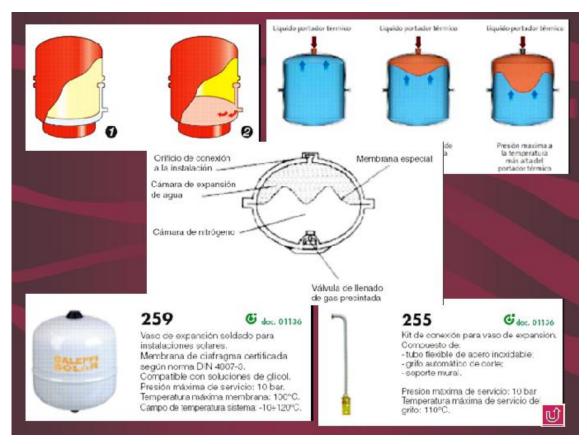


Fig. 21: Vaso de expansión cerrado (Caleffi). Ejemplo.

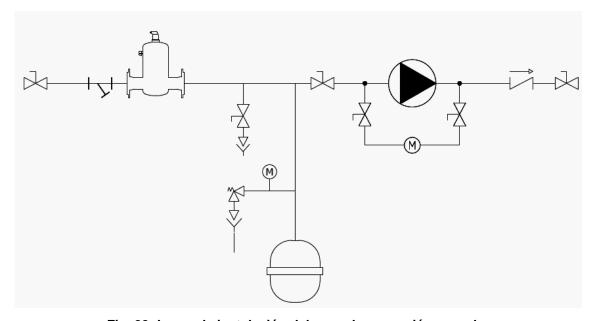


Fig. 22: Lugar de instalación del vaso de expansión cerrado.

A.8.- Aerotermo disipador: Función. Otras alternativas para evitar riesgos de sobrecalentamiento.

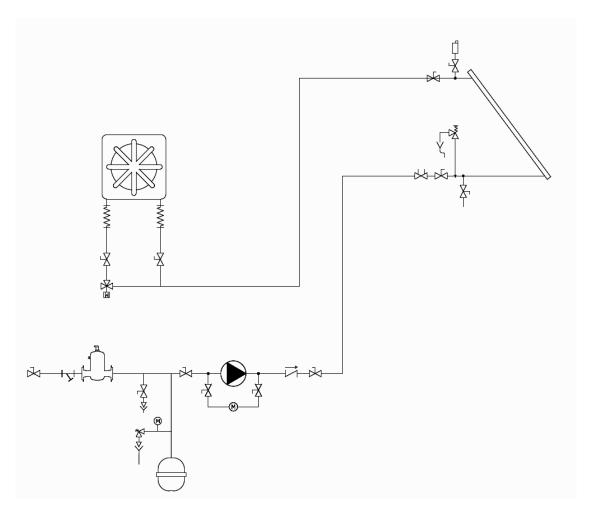


Fig. 23: Aerotermo disipador en el esquema de principio.

• Pérdida de carga en batería de agua en m. c.d.a.

Caudal		Modelo Aerotermo										
(l/h)	A 7/2	A 7/3	A 9/2	A 9/3	A 10/2	A 10/3	A 12/2	A 12/3	A 14/2	A 14/3	A 16/2	A 16/3
250	0,10	_	-	_	_	_	_	_	_	_	_	-
500	0,25	0,15	-	_	_	_	_	_	_	_	_	-
750	0,45	0,25	0,20	0,15	_	_	_	_	_	_	_	_
1.000	0,75	0,40	0,35	0,25	0,40	0,25	_	_	_	_	_	_
1.250	_	_	0,70	0,40	0,55	0,30	0,40	0,30	_	_	_	_
1.500	_	_	0,80	0,50	0,80	0,35	0,55	0,40	_	_	_	_
1.750	_	-	-	-	1	0,55	0,70	0,50	0,50	0,30	_	-
2.000	_	_	-	_	1,25	0,60	0,80	0,50	0,60	0,35	0,50	0,20
2.250	_	_	-	-	1,50	0,70	1	0,55	0,75	0,45	0,60	0,35
2.500	_	_	-	-	_	_	1,20	0,60	0,85	0,50	0,70	0,50
2.750	_	_	-	_	_	_	1,40	0,80	1	0,60	0,80	0,60
3.000	_	_	_	_	_	_	_	_	1,10	0,75	1	0,65
3.500	_	_	_	_	_	_	_	_	1,60	0,85	0,20	0,80
4.000	_	_	-	-	_	_	_	_	_	_	1,70	1
4.500	_	_	-	-	_	_	_	_	_	_	1,85	1,20
5.000	_	_	_	_	_	_	_	_	_	_	2,10	1,40

· Rendimientos aerotermos agua (Kcal/h)

Tipo	Entrada	Caudal		AGUA C	ALIENTE			VAPOR		Ø
Про	aire (°C)	(m³)	60/50°	70/60°	80/70°	90/80°	1 Kg	1,5 Kg	2 Kg	Conex.
7/2	5	450	3.100	3.800	4.500	5.000	6.000	6.250	6.500	3/4"
112	15	450	2.150	2.980	3.800	4.850	4.850	5.050	5.250	
7/3	5	400	3.700	4.700	5.600	6.600	7.900	8.230	8.560	3/4"
113	15	400	3.000	3.800	4.600	5.000	6.480	6.750	7.000	3/4
9/2	5	1.200	6.800	8.400	10.200	12.000	14.500	15.200	15.900	3/4"
9/2	15	1.200	5.000	6.800	8.600	10.600	12.800	13.400	13.900	3/4
9/3	5	1.100	9.200	11.200	13.500	15.600	19.000	19.800	20.600	1"
9/3	15	1.100	6.800	9.000	11.200	13.500	16.300	16.980	17.700	'
10/2	5	2.000	10.000	13.500	16.000	19.800	22.300	23.300	24.200	3/4"
10/2	15	2.000	9.000	11.200	12.200	14.900	20.200	21.000	21.850	3/4
10/3	5	1.850	13.300	16.600	20.500	25.500	30.600	31.875	33.150	1"
10/3	15	1.650	9.950	13.300	17.200	21.600	25.900	27.000	28.000	'
12/2	5	3.000	17.500	21.600	25.000	29.200	33.500	34.900	36.300	1"
12/2	15	3.000	12.600	17.100	21.600	25.200	30.200	31.500	32.700	'
12/3	5	2.850	22.200	27.300	32.300	38.300	47.200	49.200	51.150	1-1/4"
12/3	15	2.650	16.500	22.200	27.300	32.100	40.000	41.670	43.350	1-1/4
14/2	5	4.000	22.800	28.800	33.600	39.500	44.600	46.500	48.360	1"
14/2	15	4.000	16.800	22.800	28.800	34.600	40.300	42.000	43.680	'
14/3	5	3.850	30.000	36.900	44.800	51.900	63.700	66.350	69.050	1-1/4"
14/3	15	3.650	23.000	30.000	36.900	45.000	54.000	56.250	58.500	1-1/4
16/2	5	5.750	32.700	41.400	49.800	58.600	64.200	66.875	69.550	1-1/4"
10/2	15	5.750	24.800	32.700	41.200	50.000	57.960	60.375	62.800	1-1/4
16/3	5	5.500	44.200	54.300	65.500	75.600	91.000	94.800	98.600	1-1/2"
10/3	15	5.500	33.500	44.200	54.400	65.500	77.200	30.400	83.600	1-1/2

Fig. 24: Ficha de características de un modelo de aerotermo (ejemplo).

A.9.- Circuito secundario: Componentes. Fluido caloportador.

Una instalación con intercambiador externo implica la existencia de un circuito secundario hasta el depósito acumulador, con su correspondiente bomba de impulsión:

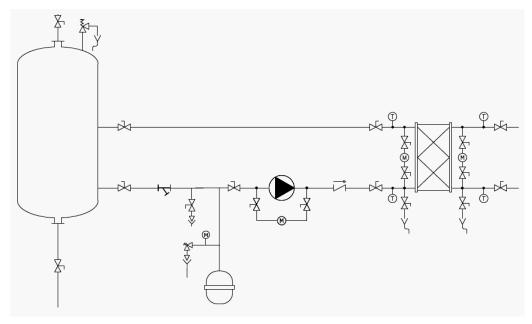


Fig. 25: Circuito secundario en un esquema de principio.

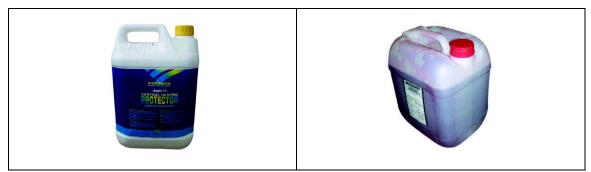


Fig. 26: Fluido caloportador para circuito primario (Lumelco).

Concentración	12%		20%		30%		32%		42%		50%	
Temperatura de congelación		-5° C		-11° C -18° C -20°		-20° C -27° C			-	36° C		
Proporción de	Agua	Anticongelante	Agua	Anticongelante	Agua	Anticongelante	Agua	Anticongelante	Agua	Anticongelante	Agua	Anticongelante
Mezcla (partes)	22	3	4	1	7	3	17	8	29	21	1	1

Fig. 27: Cuadro características fluido caloportador (Lumelco).

A.10.- Control y regulación: Termostato diferencial.

Para indicar la regulación, deben instalarse las correspondientes sondas de temperatura, unidas mediante cables eléctricos (indicados con líneas de trazos) al regulador o centralita de control que, a su vez estará conectada con los equipos que deba activar o desactivar (electrocirculador, sistemas de apoyo, válvulas motorizadas, etc).

Si se estima oportuno, puede instalarse también una sonda para la medida de la radiación solar.

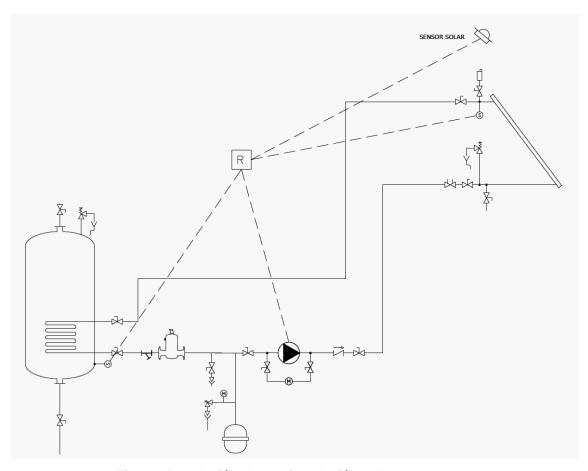


Fig. 28: Regulación de una instalación solar.

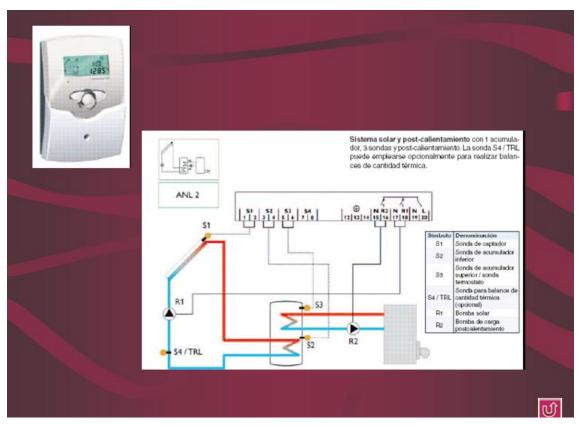


Fig. 29: Centralita de regulación solar (ejemplo). Salvador Escoda.

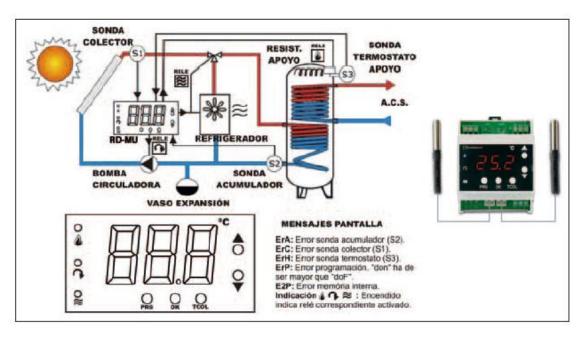


Fig. 30: Esquema comercial de un regulador solar (ejemplo). Salvador Escoda.

Parametros:

- CCo Calibración sonda colector solar (S1): Permite reajustar por posición y/o distancia de cableado de la temperatura visualizada de la sonda S1.
- CAc Calibración sonda depósito acumulador (S2): permite reajustar por posición y/o distancia de cableado de la temperatura visualizada de la sonda S2.
- CHt Calibración sonda termostato apoyo (S3): permite reajustar por posición y/o distancia de cableado de la temperatura visualizada de la sonda S3.
- don Diferencia de arranque de la bomba circuladora (17): Si la diferencia de temperatura entre la sonda S1 y la sonda S2 es mayor que este valor se activa la bomba circuladora.
- doF Diferencia de parada de la bomba circuladora (🗟): Si la diferencia de temperatura entre la sonda S1 y la sonda S2 es menor que este valor se desactiva la bomba circuladora.
- ALA Alarma temperatura sonda depósito acumulador (S2): Si la temperatura de la sonda depósito acumulador excede este valor, se activan los relés (S) y (1).
- ALC Alarma temperatura sonda colector solar (S1): Si la temperatura de la sonda colector excede este valor, se activan los relés 🙉 y 🕦.
- Ant Protección antihielo: Cuando la temperatura de la sonda colector (S1) esté por debajo de este valor, se activará el relé .
- ton Temperatura de arranque del termostato de apo-
- toF Temperatura de parada del termostato de apoyo (♣):
- Si ton < toF -> Termostato usado como apoyo (Calefacción).
- Si ton > toF --> Termostato usado para aprovechamiento del calor sobrante (Refrigeración).
- SI ton = toF --> Termostato desactivado. Felé desconectado

Fig. 31: Parámetros de control de un regulador solar (ejemplo). Salvador Escoda.

Parámetro	Valores	Por defecto
CCo	-9.0 a 9.0°C	0.0°C
CAc	-9.0 a 9.0°C	0.0°C
CHt	-9.0 a 9.0°C	0.0°C
don	2 a 15°C	8°C
doF	1 a 11°C	4°C
ALA	15 a 90°C	55°C
ALC	100 a 140°C	120°C
Ant	-25 a 10°C	5°C
ton*	0 a 95°C	40°C
toF*	0 a 95°C	45°C
Pin	0 a 99	0
tEP	3 a 40 seg.	5 seg.

Fig. 32: Valores de fábrica de los parámetros de control de un regulador solar (ejemplo). Salvador Escoda.

A.11.- Montaje de un captador de tubo de vacío.

Se procederá al montaje mecánico de un captador de tubos de vacío del tipo "heat-pipe", detallando los distintos componentes del mismo, ventajas e inconvenientes, así como las precauciones a tomar durante el montaje.

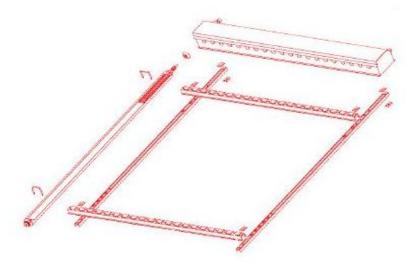


Fig. 33: Componentes de un captador solar de tubos de vacío. (Lumelco).

Datos técnicos MAZDON

Dates toon	ICOS MAZDON		MAZDON 20			
Dimensiones	Total (lxbxh) (mm)		2.021 x 1.500 x 115			
Difficusiones	Superficie de absorción (m²)		2			
Bastidor	Material		Acero Inoxidable			
Bastidor	Aislamiento		Poliuretano A.D.			
	Nº de Tubos					
Tubos	Material		Vidrio bajo en Fe			
labos	Diámetro (mm)		65			
	Espesor (mm)		1,5			
	Tipo de absorbedor		Cobre			
	Recubrimiento		Altamente selectivo (TiNOX)			
Absorbedor	Absortividad	95%				
	Emisividad	5%				
	Aislamiento		Vacío (10 ⁻⁵ mbar)			
	Tipo de fluido	Agua+Glicol				
Fluido	Volumen de fluido (litros)	0,60				
1 14145	Caudal recomendado (I/h)	Min	120			
		Max	300			
	Coeficiente óptico		0,804			
Parámetros	K1 (W/m ^z K)		1,15			
ensayados (1)	K2 (W/m² K²)		0,0064			
Parámetros Parámetros	Temperatura de estancamiento	(°C)	184			
operativos	Presión máxima (bar)		5			
Tipo de	Tipo de Conexión hidráulica bastidor (mm)					
tubería	Tipo conexión bastidor-tubos	Heat-Pipe				
Pérdida de	60 l/h		1			
carga (mbar)	300 l/h	20				
Máximo número de	e paneles en serie		3			
Peso (Kg)	Peso (Kg)					

Fig. 34: Ficha de características un captador solar de tubos de vacío. (Lumelco).

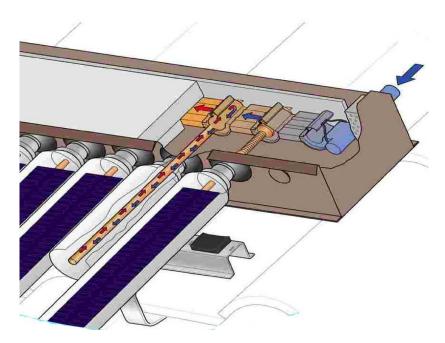


Fig. 35: Detalle del captador solar de tubos de vacío a montar durante la práctica. (Lumelco).

Fig. 36: Detalle del captador solar de tubos de vacío a montar durante la práctica. (Lumelco).